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« Solix Is the leading developer of production
systems for algae-based biofuels — with a
background in fuels and a focus on low-cost,
high productivity production technology

« Solix’s cost trajectory shows that fuel
production from algae can be cost-
competitive with petroleum — but requires
full value extraction from the production co-
products

* Solix will soon demonstrate the world’s
largest closed photobioreactor for biofuel
production.






Focused on the development
and commercialization of large-scale
algae-to-biofuels systems

Launched in March, 2006
Located in Fort Collins, Colorado
Privately funded

50+ employees: 40 full-time
+ 15 FTE from students / faculty

Headquartered at CSU Engines &
Energy Conversion Laboratory
Solix facilities
* 6,000 ft? office space, 18,000 ft?lab / fab space
* OQutdoor R&D facility in Fort Collins
« Scaleup facility being constructed in SW Colorado

Significant strategic partners in industry, science and
engineering
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Annual Production

Soybean:
Rapeseed:
Mustard:
Jatropha:
Palm oll:
Algae est.:

40 to 50 gal/acre
110-145 gal/acre

140 gal/acre

175 gal/acre

650 gal/acre
5,000-10,000 gal/acre
7,000 “nominal”

Gallons/Acre/Year
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But you also gotta obey
the laws of physics. . .

fa, . A

"We expect to produce 100,000
gallons (of vegetable oil) per acre per
year," which is a much higher yield
than soybeans and other plants being
used for biofuel...”




gal-actyr?

100,000
90,000
80,000
70,000
60,000
50,000
40,000
30,000
20,000
10,000

0

(1)
(2)
@)

Algae Oil Projections

| — |

(1)

Schenk, 2008
Chisti, 2007
NREL ASP, Sheehan et al., 1998

a m i
(2) (3) 4) (5) (6

(4)
(5)
(6)

)

Schenk, 2008
Chisti, 2007

900,000
800,000
700,000
600,000
500,000
400,000
300,000

200,000

- 100,000

0

Report on CNN, Apr 4, 2008
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Wide range of
projections...

What is the
ultimate upper
limit?



Non-PAR solar energy

Light transmission loss

Reduced photon absorption

Inherent photosynthetic loss

Cellular energy use

Non-oil biomass

/
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Energy STORED as oill a




Practical Maximum Range: 4,900 — 6,500 gal-acret-yr

B 30wt oil B 50wt% oil B 70wt3% oil

10,000

9,000

8,000

7,000

6,000

5,000

gal acre! yrt

4,000
3,000
2,000

1,000




Algae QOil Projections
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Ultimate theoretical maximum:
53,000 gal-acret-yri

Practical Range:
4,900 — 6,500 gal-acret-yrt
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Upstream Biocrude Biodiesel
Biology R&D Refining Distribution

Flue Gas \f

Speciation
Technology
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Open Pond Preductlon, ‘Earthri
§p|rulr,a; California

Earthrise Farms

The Perfect Desert Climate to Grow Premium Quality Spirulina
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Open Pond Attributes

Advantages
* Lowest capital cost

* Only technology demonstrated
at large scale — to date

« Can maintain specific cultures
of extremophiles

Disadvantages

* Allows contamination of
specific culture |
with local species / strains

e Potential for loss / migration of GMO
o Susceptible to weather
 Water loss from evaporation / percolation
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Efficiency, =P/E;

~15%-20%
of full sun

Irradiance, E;
(arbitrary units)
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Net output rate (g d™")

0
11 19 28 34 40] 46 ]53
Population density (g™}

*Optimal population density

Fig. 8.3. Interrelationships between incident PFD, optimal population density and net output rate.
A = 90% shade; B = 60% shade; C = 30% shade; D = no shade, full sunlight (from Hu & Richmond,
1994). Reprinted with permission from Kluwer Academic Publishers (J. Appl. Phycol.).

Note: 10X increase in light, but
only 3.5X increase in output.
Implies a 3X reduction in
photosynthetic efficiency.

Conversely, if diffuse light can
be used over extended surface
area, 3X increase in output
possible.
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Glass Plate Photobioreactor Glass Tube Photok
(Pulz, Richmond, others (Pulz, IGV, Ketura, Torzillo, others)

25



GV Diffuse PBR

- '-‘J.ﬁ"-f_'__‘;: _-j}::}_.___:n...
=5 m? illuminated area
for 1 m?2 of ground area

ot/

y

Figure §. Meandering plate cultivator 100 to 6000 L

Utilizes diffuse light, short photic
distances (approaches ideal cycle
time of 20 ms) for high photosynthetic

efficiency
. IGV Institut fiir Getreideverarbreitung. 26



Figure 4: The cultivation in the PBR 4000 from 21.04.2006 to 21.05.2006
with sunlight and no artificial light




High-Growth Phase Stress Phase
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Advantages

« Allow growth of specific cultures
 Allows environmental control

o Potential for much higher growth rates (with

extended surface area and/or high turbulence)

Disadvantages

Potential for high capital cost
Potential for high energy costs
_ow-cost production has not been demonstrated
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Direct Light PBR:
Low Cost & Productivity

Diffuse PBR:
High Cost & Productivity
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Photo-bioreactor (

Solix G3 Technology:
« Extended surface area

» Water supported
 Integrated CO, /

air sparging

G4 — membrane exchange
in development
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Solix G3 (cont)




Sollx G3
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Solix G3
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~ Solix G4a Technology:
« Membrane CO, delivery
 Membrane O2 removal internal

Solix G4b Technology:
 Membrane CO, delivery
e Membrane O, removal, external
* Reduced thickness / higher density
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Extraction
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 Automates
conditions for
optimal
productivity of
different
organisms in e
different climates ==

« Gives predictive
and diagnostic
capabilities
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Fuel Properties - General

CLIMATE CHANGE, Global Risks, Challenges & Decisions
COPENHAGEN 2009, 10-12 March

C()l[)l“&d{) State Unwersrty

Properties and Svuitability of Liquid Fuels Derived
from Algae

Anthony J. Marchese, Ph.D.

Engines & Energy Conversion Laboratory
Colorado State University
Fort Collins, CO, USA

hitp://www.engr.colostate.edu/~marchese
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* Algal oll is unique in that it tends

to contain a significant quantity

(~5-20%
oils, whic
traditiona
rapeseed

oy volume) of long highly unsaturated
n are rarely observed in more

biodiesel feedstocks, such as soy and
(canola) oll.

The two most common types of long and highly

unsaturated olls found in algae oll tested to date
are eicosapentaeonic acid (EPA) and
docosahexaenoic acid (DHA).
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Fatty acid content varies widely depending on the feedstock. The
chemical composition has implications in terms of combustion
characteristics.

Saturated Acids Mono Total Poly
Unsaturated Unsaturated
Acids Acids
10:0112:0|14:0(16:0|18:0(>18:0| 16:1 |18:1(22:1| n:2 | n:3 | n:4-6
Coconut 7 |47 | 15 | 8 2 6 2
Palm 3 [40 | 3 46
Rapeseed 3 2 1 1 12 | 55 |1 15| 8
Soybean 9 4 8 1 26 55| 6
Nannochlorop 2 | 15| 2 2 16 | 10 | 1 6 | 4| 31
sis Oculata
Nannochlorop 3 |14 | 11 3 19 6 7 | 3| 20
Sis sp.
M\H/V\/\A/\/ HSCﬂwﬁH” WL\/Y

methyl dodecanoate (coconut)

methyl linoleate (soy)

=]

eicosapentaeonic acid methyl ester (algae)




Algal oil differs from soy and rapeseed in that many algae species under
consideration produce up 20% of Omega-3 fatty acids.

For engine tests, “synthetic” algae oil is created by mixing a variety of
vegetable oils with pharmaceutical grade fish oil.

Pharmaceutical grade fish oil is used as a source of Omega-3 fatty acids
found in algal oil (e.g EPA and DHA)

Fraction of Composition

Nannochloropsis Oculata Profile Fish Oil Profile
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Solix

“Economics”

Economics
(Per Unit Area)

Biomass
Growth
Operating
Expense
Capital
Expense

Englneerlng
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o High Risk
O Med. Risk
o Low Risk

Supercritical CO2
Extraction

Sparged
AGS Panel

Plug Flow
Harvest

6

Model Based
Controls

Centriguation O

Size of icon denotes relative
levels of effort required to
mature the technology.

Position between gates notes
relative status within process.

ID o
Does the idea fit Does the product Development of the

Initial field Commercial release
with our strategy? make business product in line with deployment of beta of product into the
sense? the business case. varsion product. market.
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COST OF TAG PRODUCTION

(Production @ $0.06/kW-Hr)

51'5415'.3"” M CO2 Capture & Delivery M AGS
bl Harvest & Dewatering H Drying
M Extraction M Operating Costs

50.38

50.05
Current Production Phase | Phase Il Early Stage
$32.81 per Gallon (Net) $3.33 per Gallon (Net) $1.57 per Gallon (Net)

Co-Product Impact On TAG Cost
(5 per Gallon)

Total TAG Production Cost
$32.81 $32.81 o TAS

%] Met TAG Cost
(&7 Gallon of TAG Minus Co-Product Value)

$5.36 <5 33 $3.32 4,
B e —

Phase Il
Early Stage

Current Production Phase |
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Conclusions

o o by

 Economical biofuel production appears
feasible, using low-cost high productivity
photobioreactors

 Requires tight coupling of biology and
engineering

e Value of co-products must be captured,;
may approach or exceed value of oll

e Systems modeling/integration required to
achieve cost targets
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